Strongly regular graphs with (—1,1,0) adjacency matrix having eigenvalue 3
نویسندگان
چکیده
منابع مشابه
Hadamard Matrices and Strongly Regular Graphs with the 3-e.c. Adjacency Property
A graph is 3-e.c. if for every 3-element subset S of the vertices, and for every subset T of S, there is a vertex not in S which is joined to every vertex in T and to no vertex in S \ T. Although almost all graphs are 3-e.c., the only known examples of strongly regular 3-e.c. graphs are Paley graphs with at least 29 vertices. We construct a new infinite family of 3-e.c. graphs, based on certain...
متن کاملDistance-Regular Graphs with Strongly Regular Subconstituents
In [3] Cameron et al. classified strongly regular graphs with strongly regular subconstituents. Here we prove a theorem which implies that distance-regular graphs with strongly regular subconstituents are precisely the Taylor graphs and graphs with a1 = 0 and ai ∈ {0, 1} for i = 2, . . . , d .
متن کاملParallelogram-free distance-regular graphs having completely regular strongly regular subgraphs
Let = (X,R) be a distance-regular graph of diameter d . A parallelogram of length i is a 4-tuple xyzw consisting of vertices of such that ∂(x, y)= ∂(z,w)= 1, ∂(x, z)= i, and ∂(x,w)= ∂(y,w)= ∂(y, z)= i− 1. A subset Y of X is said to be a completely regular code if the numbers πi,j = | j (x)∩ Y | (i, j ∈ {0,1, . . . , d}) depend only on i = ∂(x,Y ) and j . A subset Y of X is said to be strongly c...
متن کاملStrongly Regular Graphs with Parameters . . .
Using results on Hadamard difference sets, we construct regular graphical Hadamard matrices of negative type of order 4m for every positive integer m. If m > 1, such a Hadamard matrix is equivalent to a strongly regular graph with parameters (4m, 2m +m, m +m, m +m). Strongly regular graphs with these parameters have been called max energy graphs, because they have maximal energy (as defined by ...
متن کاملThe Adjacency Matrix and The nth Eigenvalue
In this lecture, I will discuss the adjacency matrix of a graph, and the meaning of its smallest eigenvalue. This corresponds to the largest eigenvalue of the Laplacian, which we will examine as well. We will relate these to bounds on the chromatic numbers of graphs and the sizes of independent sets of vertices in graphs. In particular, we will prove Hoffman’s bound, and some generalizations. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1968
ISSN: 0024-3795
DOI: 10.1016/0024-3795(68)90008-6